
Efficient and Fault Tolerant Computation of Partially Idempotent Tasks
Edson Borin (IC/UNICAMP), Ian L. Rodrigues∗ (CEPETRO/UNICAMP), Alber T. Novo (CEPETRO/UNICAMP), João D.

Sacramento (CEPETRO/UNICAMP), Mauricio Breternitz (AMD Research), and Martin Tygel (IMECC/UNICAMP)

Copyright 2015, SBGf - Sociedade Brasileira de Geofı́sica.

This paper was prepared for presentation at the 14th International Congress of the
Brazilian Geophysical Society, held in Rio de Janeiro, Brazil, August 3-6, 2015.

Contents of this paper were reviewed by the Technical Committee of the 14th

International Congress of The Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of The Brazilian Geophysical Society is prohibited.

Abstract

The popularization of multi-core processors on
computational systems and cloud services enabled
access to high performance computing infrastructure.
However, programming for these systems might be
cumbersome due to frequent system failures when
using thousands of machines, poor load balancing
and task scheduling. To solve these problems, we
introduce a concept of partially idempotent tasks and
discuss how their properties ease the implementation
of fault tolerant mechanisms, load balancing on
heterogeneous systems and dynamic provisioning of
resources. Additionally, we propose a programming
model, a scalable system and an API which executes
these kind of tasks and we present an usage example
of our system to a simple problem.

Introduction

The rising of multi-core processors of general purpose
and specialized ones, like GPUs, made the development
of parallel code for shared memory machines an
essential skill to extract maximum performance from those
hardwares. Furthermore, the popularization of computer
clusters and utility computing, term usually used for cloud
systems, enabled many people to have access to high
performance computing infrastructures, thus rising the
importance and demand for development of parallel code
on distributed memory systems.

The need for parallelized code motivated the development
of many programming models and interfaces in the past
years. OpenMP (Dagum and Menon, 1998), OpenCL
(Stone et al., 2010), CUDA (Nickolls et al., 2008), TBB
(Reinders, 2007), and MPI (Forum, 1994) are some
examples of application programming interfaces (API),
programming models and libraries supporting parallel
computational systems. However, the majority of these
models or APIs requires the use of specialized compilers,
operating systems, tools or libraries; or are restricted to a
system with either shared memory or distributed memory.
Besides that, many of these are not transparent when
dealing with fault tolerant mechanisms, an essential feature
to scale the execution of the program to hundreds (or
thousands) of processing nodes.

Many problems like ray tracing in computer graphics,

matrix multiplication, Monte Carlo integration, the CRS
(Jäger et al., 2001) method for seismic analysis, belong
to a class of problems called “embarrassingly parallel”.
These problems are usually trivially separated into smaller,
independent subproblems which, in turn can be solved in
parallel with little to no restriction in the execution order.
Although these problems are trivially parallelized, building
a solution able to scale to hundreds or thousands of
computing nodes is still a challenge in itself.

Many of the algorithms for embarrassingly parallel
problems can be decoupled into partially idempotent tasks,
or PITs. In addition to being easily parallelized, PITs can
be executed multiple times without affecting the final result.
We discuss the properties of PITs, propose a programming
model and a scalable, fault tolerant system to compute PIT
tasks called Scalable Partially Idempotent Tasks System
(SPITS).

Related Work

Recently, de Kruijf and Sankaralingam (2011) proposed an
architecture of idempotent processors and demonstrated
that the called “idempotent processing” allows the
implementation of speculative optimization in the processor
without needing costly mechanisms of check pointing for
the recovery of the architectural state. The authors
observed that the precise state their architecture can be
rebuilt by simply re-executing idempotent regions. In
another work, de Kruijf et al. (2012) implemented a
compilation technique aiming the division of the program
in idempotent regions. In this work, the idempotence
concept was extrapolated to tasks and the idempotence
property was used to facilitate the implementation of fault
tolerant mechanisms and load balancing in heterogeneous
systems.

The MapReduce (Dean and Ghemawat, 2008) technique
splits the input data into several small parts. Each part
is inputed, in parallel, to a user defined function called
map, which outputs a key-value pair. After all key-value
pair were created, MapReduce enters shuffle phase, where
values with the same key are grouped into one worker
node. When all values with the same key were grouped,
the user defined function reduce is called to generate the
final key-value pair output. This functionality is inside of the
open source Hadoop system.

To tolerate the discrepancy of performance of processing
node in heterogeneous computational systems, Hadoop
execution system (called tasktracker) monitors the task
progress and may start two or more identical tasks in
different nodes. The first task to finish writes its results
in the file system, whilst the other tasks are finishing. LATE
(Longest approximate time to end) algorithm exploits the
pros of the idempotent properties in commercial systems

Fourteenth International Congress of The Brazilian Geophysical Society

EFFICIENT COMPUTATION OF PARTIALLY IDEMPOTENT TASKS 2

of distributed computing, which is a part of the recent
distribuition of MapReduce in Hadoop.

The SPITS extends the Hadoop approach of starting
multiple copies of the same task to achieve a fault tolerant,
scalable and dynamic provisioned system for partially
idempotent tasks. It will be able to extend to heterogeneous
systems (computational clouds, GPU, x86 and ARM).

Partially Idempotent Tasks and its advantages

Idempotent tasks are tasks which can be executed multiple
times without altering the results after the initial execution.
Figure 1 (a) shows an example of a idempotent task.
Observe that, even if the program is executed multiple
times, the result stored in the C matrix remains the same.
On the other hand, Figure 1 (b) illustrates a non idempotent
task. Note that if the code is executed twice, the result
stored in matrix A will vary between executions.

f l o a t A[1 0 0] [1 0 0] ;
f l o a t B[1 0 0] [1 0 0] ;
f l o a t C[1 0 0] [1 0 0] ;
void matr ix mul () {

i n t i , j , k ;
for (i = 0 ; i < 100; i ++) {

for (j = 0 ; j < 100; j ++) {
f l o a t tmp = 0;
for (k = 0 ; k < 100; k++)
tmp += A[i] [k] ∗ B[k] [j] ;

C[i] [j] = tmp ;
}
}
}

(a) Idempotent

f l o a t A[1 0 0] [1 0 0] ;
f l o a t B[1 0 0] [1 0 0] ;
void mat r i x acc () {

i n t i , j ;
for (i = 0 ; i < 100; i ++)

for (j = 0 ; j < 100; j ++)
A [i] [j] += B[i] [j] ;

}

(b) Non idempotent

Figure 1: Examples of (a) idempotent tasks and (b) non
idempotent tasks.

In many cases, the consolidation of the results of all
idempotent tasks is not an idempotent operation. Consider
the operation defined by the concatenation of all results
into one file. This operation is obviously not idempotent,
because if we execute the operation twice, the file will be
twice as big. Thus, we propose a concept of partially
idempotent tasks, or PITs, where the computation of the
task is subdivided in two phases: the execution and the
consolidation. The execution of the task is an idempotent
operation, while the consolidation is non idempotent. The
focus of this paper is the efficient execution of PITs
where the cost of execution is significantly higher than the
consolidation of the tasks.

Fault tolerance: many fault tolerant systems uses the
complex and costly checkpoints mechanisms, which
allows the recovery of the system state after a failure
(Egwutuoha et al., 2013). However, Kruijf et al. de Kruijf
et al. (2012) observed that idempotence enables system
recovery simply by re-executing the affected region when
the program failed. This property allows a system
which executes PITs to recover without checkpoints, thus
avoiding expensive solutions.

Because consolidation phase is not idempotent, it cannot
be re-executed to recover from an eventual failure. Thus,
we propose the consolidation phase to be executed in
processing nodes having other fault tolerant mechanisms.
Another possibility is the execution of that phase in a small
subset of nodes, reducing the probability of a failure in
a system with hundreds or thousands of nodes. Both
approaches can affect performance of the consolidation
operation, which can be caused by expensive fault tolerant
mechanisms in the first case or by reducing parallelism in
the second case. But, as we stated before, the execution
phase of PITs are significantly costlier than consolidation,
thus reducing system load.

Load balancing: load balancing is a fundamental
operation to maximize available resources in a parallel
computational system. The work stealing Blumofe and
Leiserson (1999) technique is a greedy algorithm which
distributes work load to processing nodes on demand,
and it is generally very effective when balancing loads
in homogeneous systems. However, naive application of
work stealing technique in heterogeneous systems might
not work. Figure 2 (a) shows an example where load
balancing with work stealing does not provide satisfactory
performance in a heterogeneous system. In this example,
the work stealing technique delegated the task T1 to
processor A, and task T2 to processor B. However,
processor A is much faster than processor B and, as
illustrated in Figure 2 (b), the computation would be faster
if both tasks were delegated to processor A.

Figure 2 (c) also shows an example where tasks are
distributed with the working stealing technique, but by
the time T1 finishes in A, task T2 is delegated from B
processor to A, improving the system efficiency. Although
in this example we have a speedup, the delegation of tasks
in execution phase to other nodes might be difficult or
impossible in some cases.

An alternative solution to all others is shown in Figure 2 (d).
In this case, tasks are also distributed with the same
technique of work stealing, however a copy of task T2,
which is already executing in processor B, is delegated to
be executed in processor A as soon as it gets idle. By the
time T2 finishes in A, the system interrupts the computation
of T2 in B, for it is not necessary anymore. This approach
improves the load balancing and avoids the whole system
from getting stuck waiting for a slow node to finish its task.

The execution of the same task in multiple processing
nodes could affect the final result of the computation.
However, the idempotence property allows us to execute
the same PIT multiple times without changing the final
result. In this manner, the speculative scheduling of PITs
in idle nodes enables an effective load balancing in parallel
computing nodes with heterogeneous performance.

Fourteenth International Congress of The Brazilian Geophysical Society

BORIN ET AL. 3

B

T1
E

xe
cu

tio
n

tim
e

T2

A

(a)

B

T1

T2

E
xe

cu
tio

n
tim

e

A

(b)
B

T ′′2

T1

E
xe

cu
tio

n
tim

e

Transfered
Task

T ′2

A

(c)

Task

T1

E
xe

cu
tio

n
tim

e

T2

T2

BA

Canceled

(d)

Figure 2: Example of task scheduling in heterogeneous
systems.

SPITS

SPITS is a scalable system for computing partially
idempotent tasks. Following, we present the parallel
programming model, the system architecture and its API.

Parallel programming model

The SPITS programming model consists in generating,
executing and consolidating PITs. The programmer
is responsible for writing four functions to fulfill those
operations. The functions are:

• generatePIT: generates one or more partially
idempotent tasks. The system calls this function
successively and delegates them to processing
nodes.

• executePIT: called on processing nodes, executes
the idempotent phase of the task, producing a result.
The system will transfer the results to the nodes
responsible for consolidating the them.

• commitPIT: called once for each result generated by
executePIT sequentially. All calls to this function
are made on the same process, thus the memory
is shared between executions, enabling the user to
combine the tasks results. The system does not
assume idempotence in this phase.

• commitJOB: when provided, is called after the
consolidation of the task results. As this function is
called on the same process which consolidated the
results, the memory is shared between them.

SPITS system calls the function generatePIT multiple
times until it returns 0, indicating that no more tasks to
be generated. As tasks are generated, SPITS transmits
them to processing nodes, superposing the generation,
transmission and execution of tasks. This approach helps
to hide the network latency.

SPITS architecture

SPITS architecture is a composition of four main parts:
Job Manager , Task Manager , Worker (w) and Committer .
Figure 3 illustrates the communication between these
components.

· · ·

Task

WW W

Processing node

Manager
Task

WW W

Processing node

CommitterJob
Manager

Manager

Figure 3: SPITS components.

The Job Manager (JM) is one of the main components
of SPITS. It is responsible for generating and distributing
tasks for execution in the processing nodes. Besides
that, the JM is responsible for retiring successfully finished
jobs and redistributing uncompleted tasks. As discussed
in the past section, redistribution of tasks is the core
of the fault tolerance mechanism and load balancing of
heterogeneous systems.

The Task Manager (TM) is the component that executes
tasks delegated to processing nodes. To accomplish that,
the TM distributes tasks to Workers, which in turn executes
the task by calling executePIT, provided by the user.
Each worker is associated to a computing unit on the node,
which can be processing cores of the CPU, GPUs, etc.

Workers execute the code that computes tasks and
produces results as output, called task result. The results
of the execution phase must be consolidated, however, to
ease the fault tolerance mechanism (as discussed on the
last section) the consolidation phase is done in a single
node, so every result is transmitted to this particular node.

The Committer is responsible for consolidating the task
results produced by the workers. To do that, Committer
calls commitPIT for each received result. The fault
tolerant and load balancing mechanisms will eventually
replicate tasks, so the committer might receive multiple
copies of a result regarding the same task. However,
as consolidation is not idempotent, only one copy of the
result must be consolidated. Thus, the committer is also
responsible for guaranteeing to call commitPIT exactly
once for each result.

Fourteenth International Congress of The Brazilian Geophysical Society

EFFICIENT COMPUTATION OF PARTIALLY IDEMPOTENT TASKS 4

Besides consolidating the task results, the committer also
signals the job manager that a task has been successfully
finalized, allowing it to retire that task, meaning it will not
be eligible for re-execution by the load balancing or fault
tolerance mechanisms. After consolidating all tasks, this
component calls commitJOB, provided by the user to wrap
up the computation as a whole. This function might output
a sequence of bytes to be copied back to the job manager
and returned to the user.

Only one instance of the job manager component
is executed during the computation. In this way,
the function generatePIT is not executed in parallel,
which simplifies its implementation for not requiring data
synchronization mechanisms. The same happens with
the commiter component, simplifying the implementation
of the commitPIT function. The task manager, however,
can be executed in multiple processing nodes in a
concurrent manner. Besides that, the task manager can
handle multiple workers in the same process by calling
executePIT in different threads, for example. For this
reason, the programmer must be cautious when modifying
shared data (such as global variables) on the executePIT
function.

Fault tolerance

The failure of one or more processes of a parallel
application could invalidate its result. Although this is
not common in system with a few processing nodes, the
chance of a failure occurring in systems with hundreds or
thousands of nodes is high. Thus, to correctly finish a
computation, the system must tolerate eventual failures.

SPITS tolerates failures in the processing nodes by using
the idempotence property of the tasks while in execution
phase. This property allows the system to execute this
phase in multiple processing nodes redundantly. This
approach allows SPITS to tolerate failures without the
necessity of expensive checkpoint mechanisms.

It is important to highlight that the job manager and
commiter components, responsible for task generation
and consolidation, executes operations which are not
idempotent, thus SPITS does not tolerate failures on the
nodes executing them. However, as discussed before,
the number of nodes executing these components is small
(usually 1 or 2), reducing the chances of a failure in this part
of the system. Besides that, the user can execute these
components in processing nodes with other mechanisms
of fault tolerance.

The task manager and workers components, responsible
for the task execution phase, can be executed in hundreds
or thousands of nodes. It is important that the system
tolerates failures in nodes which execute them. In this
case, the fault tolerance is done trough replication of tasks,
and works in the following way: initially the job manager
generates tasks and distributes to task managers. The
distributed tasks are added to a WIP, or “work in progress”,
list where they can be re-distributed in the future. Once the
result of an executing task is consolidated by the committer,
the job manager retires that task, removing it from the
WIP list. As soon as the generatePIT function returns
zero (which indicates there are no more tasks), the job
manager starts to redistribute the tasks in the WIP list in a
circular manner, replicating them in the processing nodes

until every task gets retired. Once all tasks are retired, the
job manager sends a signal to every task manager so they
can stop executing.

Processing nodes which fail will not send their results to the
committer, however, the same task will certainly be send
to other processing nodes, since it stays in the WIP list
until it is retired. This mechanism tolerates failures of the
Fail-Stop kind (Schlichting and Schneider, 1983). However,
the system can be easily extended to tolerate byzantine
failures by means of task replication and comparison of
results for differences in the committer.

Load balancing in heterogeneous systems

The same mechanism used to tolerate failures is used to
balance the system load in heterogeneous systems. As
discussed before, when there are no more tasks to be
generated, the job manager starts to re-distribute tasks
in the WIP list until every task gets retired. As faster
processing nodes finishes their tasks, the work in progress
list is cycled, re-distributing those tasks to these faster
nodes. As we showed in Figure 2 (d), this approach avoids
waiting for slow nodes from finishing their tasks.

Dynamic provisioning of resources

SPITS allows processing nodes to be added or removed
from the system while executing the jobs. Added nodes
during computation connect with the job manager and
promptly starts receiving new tasks or even re-distributed,
non consolidated tasks. To remove nodes, there is no
need to wait their tasks to finish, since the fault tolerance
mechanism will take care of re-distributing those canceled
tasks again to other, healthy nodes. In a way, SPITS allows
the user or the system to dynamically adjust the resources
to a job.

The flexibility provided by this mechanism simplifies
the management of shared resources and dynamic
provisioning of on demand resources. SPITS fits very well
with the cloud computing concept, where users can easily
allocate or deallocate resources whenever needed.

C language API

The first API developed for SPITS is dedicated to programs
written in the C language. This API requires from
the programmer to create a shared library exporting the
following symbols1:

• void* setupJM(int argc, char *argv[]):
called before the job manager starts task distribution.
The return value is an address to a memory region
allocated in the job manager process. This pointer is
passed to the generatePIT function.

• int generatePIT(void *user data, struct
byte array *task): produce tasks to be executed.
The tasks must be serialized in the byte sequence
task. This sequence will be transmitted to the task
managers and then to workers, where the function
executePIT will be called. The user must return
1 in case there are more tasks to be sent, and 0
otherwise.

1Because of the experimental characteristic of the project,
names and implementation details might change drastically. See
https://github.com/ianliu/spitz

Fourteenth International Congress of The Brazilian Geophysical Society

BORIN ET AL. 5

• void* setupTM(int argc, char *argv[]):
called before the task manager starts executing tasks.
The return value is an address pointer to a memory
region allocated in the task manager process, which
is passed to the executePIT function. Note that
there will be several instances of task managers,
which implies the memory is not shared between
them.

• void executePIT(void *user data, struct
byte array *task, struct byte array

*result): executes the task serialized on the bytes
sequence task. This function must write the task
result in the byte sequence result and need to be
idempotent, meaning the result cannot vary in case
this function is executed more than once for the same
task.

• void* setupComm(int argc, char

*argv[]): called before the committer starts
consolidating the results. The return value is a pointer
to a memory region allocated on the committer
process. This pointer is passed to commitPIT and
commitJOB functions.

• void commitPIT(void *user data, struct
byte array *result): consolidates the results
generated by the executePIT function. The system
does not assume commitPIT is idempotent, thus it
will be called once for each task result.

• void commitJOB(void *setup, struct
byte array *ret): consolidates the work as a
whole. This function is called after the all task results
were consolidated with commitPIT function. The
value written in the bytes sequence ret will be
transmitted to the main process which started the
tasks execution, allowing the result of the computation
to be returned to the user.

After compiling the above functions in a shared library, the
system will be capable of loading the library in execution
time in each of the computing nodes, and will call them
according to the node responsibility.

With these functions it is possible to execute a job in
the SPITS model, taking advantage of fault tolerance
and scalability. But idempotence can be restrictive for
some problems, thats why we created a mechanism which
enables the execution of several jobs in sequence using
the SPITS model. To accomplish this another function is
needed, called spitsMain:

• void spitsMain(int argc, char *argv[],
SpitsRunner run): this function is called in
the job manager and receives the command line
arguments and a run function (explained below).
In the spitsMain function the user can program
serially and, when necessary, call the run function to
start a SPITS job.

• void run(int argc, char *argv[], const
char* dll filename, struct byte array*
ret): This function starts a SPITS job and returns
after all tasks were executed and consolidated. The
function takes as arguments the path to a shared

library and a pointer to the bytes sequence which will
be written by the commitJOB function by the end
of the computation. The system loads the library in
each of the processing nodes and calls the functions
generatePIT, executePIT, commitPIT and
commitJOB.

The shared library mechanism decouples the program from
the execution engine of SPITS tasks, allowing the same
program to run in different parallel computing systems.

A primary version of the SPITS code, as well as
usage examples, is available in https://github.com/
ianliu/spitz.

C++ language API

The system developed also provides an interface to
programs in the C++ language. In this case, the user
must implement three classes: one to manage the workers,
another to manage tasks and one to consolidate the
tasks. These classes must extend the following classes:
SpitsJM, SpitsTM and SpitsComm.

The class SpitsJM has the following virtual methods:

• void setup(int argc, char *argv[]);

• bool generatePIT(Stream& task)=0;

The class SpitsTM has the following virtual methods:

• void setup(int argc, char *argv[]);

• void executePIT(const Stream& task,
Stream& result)=0;

The class SpitsComm has the following virtual methods:

• void setup(int argc, char *argv[]);

• void commitPIT(const Stream& task)=0;

• void commitJOB(Stream& ret)

The following listing illustrates a program in C++ using
the SPITS system to calculate and approximation of the
number π using a naive Monte Carlo approach:

class CalcPiJM : public SpitsJM {
int num_points;

public:
void setup(int argc, char *argv[]) {
num_points = atoi(argv[0]);

}
bool generatePIT(Stream& task) {
if (num_points == 0) return false;
double x = (double)rand()/RAND_MAX;
double y = (double)rand()/RAND_MAX;
task << x << y;
num_points--;
return true;

}
};
class CalcPiTM : public SpitsTM {
public:

Fourteenth International Congress of The Brazilian Geophysical Society

EFFICIENT COMPUTATION OF PARTIALLY IDEMPOTENT TASKS 6

void executePIT(const Stream& task,
Stream& result)

{
double x, y;
task >> x >> y;
result << (x*x + y*y <= 1);

}
};
class CalcPiComm : public SpitsComm {
int count;
int num_points;

public:
void setup_Comm(Stream& setup) {

num_points = atoi(argv[0]);
count = 0;

}
void commitPIT(const Stream& taskresult)
{

int x;
taskresult >> x;
count += x;

}
void commitJOB(Stream& ret) {

double pi = 4.0L * count / num_points;
cout << "Pi = " << pi << endl;

}
};

Conclusions

We introduce a concept of partially idempotent tasks and
discuss how its properties ease the implementation of
fault tolerance, load balancing in heterogeneous systems
and dynamic provisioning of resources. Besides that we
proposed SPITS, a programming model, scalable system
and an API to execute these kind of tasks. A first draft
implementation of the program is also provided to the
community with the GPL license, with bindings for C and
C++.

Acknowledgments

We acknowledge support from the National Council for
Scientific and Technological Development (CNPq-Brazil),
the National Institute of Science and Technology of
Petroleum Geophysics (ICTP-GP-Brazil) and the Center for
Computational Engineering and Sciences (Fapesp/Cepid
2013/08293-7-Brazil). We also acknowledge support
from the sponsors of the Wave Inversion Technology (WIT)
Consortium and Petrobras.

References

Blumofe, R. D., and C. E. Leiserson, 1999, Scheduling
multithreaded computations by work stealing: J. ACM,
46, 720–748.

Dagum, L., and R. Menon, 1998, Openmp: An industry-
standard api for shared-memory programming: IEEE
Comput. Sci. Eng., 5, 46–55.

de Kruijf, M., and K. Sankaralingam, 2011, Idempotent
processor architecture: Presented at the Proceedings
of the International Symposium on Microarchitecture
(MICRO’11).

de Kruijf, M. A., K. Sankaralingam, and S. Jha, 2012, Static
analysis and compiler design for idempotent processing:
Presented at the Proceedings of the Conference on
Programming Language Design and Implementation
(PLDI’12).

Dean, J., and S. Ghemawat, 2008, Mapreduce: Simplified

data processing on large clusters: Commun. ACM, 51,
107–113.

Egwutuoha, I., D. Levy, B. Selic, and S. Chen,
2013, A survey of fault tolerance mechanisms and
checkpoint/restart implementations for high performance
computing systems: The Journal of Supercomputing,
65, 1302–1326.

Forum, M. P., 1994, Mpi: A message-passing interface
standard: Technical report, Knoxville, TN, USA.

Jäger, R., J. Mann, G. Höcht, and P. Hubral, 2001,
Common-reflection-surface stack: Image and attributes:
Geophysics, 66, 97–109.

Nickolls, J., I. Buck, M. Garland, and K. Skadron, 2008,
Scalable parallel programming with cuda: Queue, 6, 40–
53.

Reinders, J., 2007, Intel threading building blocks, first ed.:
O’Reilly & Associates, Inc.

Schlichting, R. D., and F. B. Schneider, 1983, Fail-stop
processors: An approach to designing fault-tolerant
computing systems: ACM Transactions on Computer
Systems, 1, 222–238.

Stone, J. E., D. Gohara, and G. Shi, 2010, Opencl:
A parallel programming standard for heterogeneous
computing systems: IEEE Des. Test, 12, 66–73.

Fourteenth International Congress of The Brazilian Geophysical Society

